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ABSTRACT: A particle filter is proposed to perform joint estimiation of the carrier frequency offset (CFO) and the 
channel in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) wireless 
communication systems. It marginalizes out the channel parameters from the sampling space in sequential importance 
sampling (SIS), and propagates them with the Kalman filter. Then the importance weights of the CFO particles are 
evaluated according to the imaginary part of the error between measurement and estimation. The varieties of particles 
are maintained by sequential importance resampling (SIR). Simulation results demonstrate this algorithm can estimate 
the CFO and the channel parameters with high accuracy. At the same time, some robustness is kept when the channel 
model has small variations 

KEYWORDS: Carrier Frequency Offset,Multiple-Input Multiple-Output (MIMO), Orthogonal Frequency Division 
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——————————      —————————— 
 
1.INTRODUCTION 

 The combination of orthogonal frequency 
division multiplexing (OFDM) and multiple antennas 
at both the transmitter and the receiver, referred to as 
multiple input multiple-output (MIMO). In the 
MIMO-OFDM transmission system the carrier 
frequency offset (CFO) induced by the local 
oscillator and the Doppler shift results in the 
interference of sub-carriers and further incurs an error 
floor effect. It is required to estimate and compensate 
for the CFO at the receiver side. Moreover, the 
unknown channel parameters mixed in the 
transmission will deteriorate the acquisition condition 
in practice .In contrast to frequency synchronization 
schemes of single-input single-output (SISO)-OFDM 
systems this problem is extended to multi-
dimensional parameter acquisition in MIMO systems. 
Hence, it incurs much difficulty for the coherent 
detection. Various methods have been investigated to 
estimate multiple time-invariant frequency offset and 
channel parameters, such as maximum-likelihood 

estimation correlation-based method, expectation 
maximization (EM) and iterative methods. They all 
use the Cramer Rao bound as the precision reference. 
In addition, an extended Kalman filter (EKF) is 
designed to track time-variant parameters.  

 Recently, a sequential Monte Carlo approach in 
the Bayesian framework has been widely investigated 
in the wireless communication systems. These 
particle filtering algorithms estimate the state 
information with a posterior probability. Moreover, 
they can achieve theoretical optima in the presence of 
nonlinear and non-Gaussian models. In comparison 
with other nonlinear estimation methods such as EKF 
and unscented Kalman filter (UKF), a particle filter 
will yield more accurate results along with the 
flexibility of the algorithm design .However, in terms 
of this high-dimensional parameter estimation, it is 
very hard to get appropriate particles with small 
distribution variance on each dimension by the 
general sequential importance sampling (SIS) 
method. 
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  When the transmit/receive antennas in a 
MIMO system share one oscillator, the difference of 
CFOs among different antenna pairs can be 
negligible. Under such a scenario, the particle filter is 
investigated to marginalize out the unknown time-
variant Rayleigh channel from the sampling space. 
The channel is estimated by the Kalman filter on the 
assumption that its response model is known. The 
particle weights of CFO are evaluated according to 
the estimation error. Simulation results demonstrate 
the algorithm can estimate the CFO and the channel 
jointly with high accuracy, as well as its robustness to 
small variations of the channel model. 
 

I.     SYSTEM MODEL 

   Figure1 Block diagram for OFDM SIGNAL  
GENERATION  
 
2.1 MIMO OFDM System: 

Consider an uplink OFDM system with 𝑁 
subcarriers and 𝐾 active users. The base station (BS) 
and each active  user are equipped with 𝑀𝑟 and 𝑀𝑡 
antennas, respectively. Each user is assigned 𝑁𝑘 
exclusive subcarriers, we denote the index set of 
carriers assigned to the 𝑘-th user as where 1 ≤ 𝑖𝑙 ≤ 𝑁 
for 𝑙 = 1, 2, 𝑁𝑘. The proposed algorithms are 
applicable to any carrier assignment scheme (CAS). 
Note that even though we are using orthogonal 
subcarriers, self-interference and MAI are inevitable 
due to CFOs Denote by the data symbols transmitted 
by the 𝑘-th user from the 𝑝- th transmit antenna over 
the 𝑛-th OFDMA block. For convenience, we assume 
that the data symbols are taken from the same 
complex-valued finite alphabet and independently 
identically distributed.  The 𝑖-th entry of is non-zero 
if and only if .next,  is converted to the corresponding 

time-domain vector by an 𝑁-point inverse discrete 
Fourier transform (IDFT): 
                                          

𝑑𝑘
𝑝(𝑛) = 𝑤𝐻𝑑𝑘

𝑝(𝑛)               (1) 

 Where is the IDFT matrix. To prevent inter-
symbol interference (ISI), a cyclic prefix (CP) of 𝑁𝑔 
symbols is appended in front of each IDFT output 
block. The resulting vector of length is digital-to-
analog converted by a pulse-shaping filter with a 
finite support on [0, 𝑇𝑑] where with 1/(𝑁𝑇𝑠) being 
the subcarrier spacing. Finally, the analog signal from 
the pulse-shaping filter is transmitted from the 𝑝-th 
antenna over the channel. 

 That is, be the normalized carrier frequency 
offset with respect to (w.r.t.) the carrier spacing 
1/(𝑁𝑇𝑠) between transmit antennas of the 𝑘-th user 
and the 𝑞-th receive antenna of the BS. In the 
presence of CFOs, the received vector signal after 
removing the guard interval becomes 
               
                         
  𝑟𝑞(𝑛) = ∑ ∆(∈𝑘

𝑞 (𝑛)∑ 𝐷𝑘
𝑝(𝑛)ℎ𝑘

𝑝.𝑘(𝑛) +𝑚𝑡
𝑝=1

𝑘
𝑘=1

𝑣𝑞(𝑛)0 

                                                           
= ∑ 𝐷𝑘

𝑝(𝑛)ℎ𝑘
𝑝.𝑘(𝑛) + 𝑣𝑞(𝑛)              𝑘

𝑘=1 (2) 

Recall that the CP length equals the channel length 
plus timing offset. Under such an , the timing errors 
do not explicitly appear in the received signal model. 
Thus, we have suppressed the timing errors in (2). 
Several approaches have been proposed to model the 
time-varying channels and frequency offsets in 
mobile environments. Since we assume a normalized 
Doppler spread 𝑓𝐷𝑇𝑑 ≪ 1,we adopt the following 
first-order autoregressive (AR) parametric model 
widely used to characterize the time-varying 
frequency offset and channel responses.  
                                   

              ∈𝑘
𝑞 (𝑛) = 𝛼𝑘 𝐸

𝑞 ∈𝑘
𝑞 (𝑛 − 1)

+ 𝑤𝑘 𝐸
𝑞 (𝑛)                               

                                              
ℎ𝑘
𝑞(𝑛) = 𝛼𝑘 𝐸

𝑞 ℎ𝑘
𝑞(𝑛 − 1) + 𝑤𝑘 ℎ

𝑞 (𝑛)            (3) 
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Furthermore, we assume that  Note that we assume 
independent fading across transmit antennas and 
multi-paths. The time variation in CFO in (4) arises 
from (a) local oscillator instability due to 
temperature/voltage variations and (b) changes in 
relative platform Doppler velocity. In the next 
section, we propose a pilot-aided parallel Schmidt 
extended particle filter approach to estimate based on 
the received signal (𝑛), assuming exact knowledge of 
and  in the BS.  
       The incoming input binary streams are first 
mapped into constellation points according to any of 
the digital modulation schemes such as QPSK/QAM. 
In QPSK (Quadrature Phase Shift Keying) 
modulation, the incoming binary bits are combined in 
the form of two bits and are mapped into 
constellation point. The N constellation points are 
modulated using N sub- carriers whose carrier 
frequencies are orthogonal in nature. The modulation 
is similar to taking inverse discrete/fast fourier 
transform (IDFT/IFFT) operation. The output of N 
point (IFFT) block is the OFDM signal. Now the N 
OFDM signal samples are combined and then 
transmitted i.e., the parallel samples are now 
converted into serial sequence and then it is 
transmitted. The OFDM baseband signal at the 
transmitter is expressed as in 

                    
                                                   𝑥(𝑛) =
1/√𝑛∑ 𝑥(𝑘)𝑒𝑗2𝜋𝑛𝑘/𝑛𝑁−1

𝑘=0 .   0<n<N-1             (4) 

where  

n -time domain sample index  
X (k) -modulated QPSK data symbol on the kth 
subcarrier  
N -total number of subcarriers and  
x (n) -OFDM signal.  
In order to maintain a signal to noise ratio (SNR) of 
20 decibels or greater for the OFDM carriers, offset 
is limited to 4% or less than the inter carrier spacing 
which is simulated in the lower bound for the SNR at 
the output of the DFT for the OFDM carriers in a 
channel with AWGN and frequency offset is derived 
as and is given by  
                       
𝑆𝑁𝑅 ≥ �𝐸𝑐

𝑁0
� �𝑠𝑖𝑛𝜋𝑣

𝜋𝑣2
�/{10.594(𝐸𝑐

𝑁0
)}( {𝑠𝑖𝑛𝜋𝑣)2}      (5) 

             Ec is the energy of subcarrier, All the 
preamble based frequency offset estimation methods 
given in literature aims at accuracy and increasing the 
range of frequency offset estimation. The importance 
of frequency offset estimation in various high speed 
broadband wireless applications can be understood       
 
2.2 CFO Estimation : 
 
      Particle filtering is a sequential sampling 
method built on the Bayesian paradigm. From the 
Bayesian theory, at sample k , the posterior 
distribution p(x0:k | r0:k) is the main entity of 
interest. However, due to the nonlinearity of the 
measurement equation, its analytical expression is not 
tractable. Alternatively, particle filtering can be 
applied to approximate this PDF by stochastic 
samples generated using a sequential importance 
sampling strategy.   Particle filtering is an extension 
of the sequential methodology. It consists in 
recursively estimating the required posterior density 
function p(x0:k | r0:k) by a set of M random samples 
with associated weights, denoted by  

�̂� �
𝑥0
𝛾0:𝑘

� = �𝛿�𝑥0:𝑘 − 𝑥0:𝑘
𝑗 �𝑤𝑘

(𝑗)           (6)
𝑀

𝐽=1

 

Where  is drawn from the importance function is the 
Dirac delta function and is the normalized importance 
weight associated with the j-th particle. The weights  
are updated according to the  

           𝑤𝑘
(𝑚)𝛼

𝑝�𝛾𝑘𝑥0:𝑘−1
(𝑚) ,𝛾0:𝑘�𝑝�𝛾𝑘𝑥0:𝑘−1

(𝑚) ,𝛾0:𝑘�

𝜋(𝑥𝑘
(𝑚)/𝑥0:𝑘−1

𝑚  𝛾0:𝑘)
𝑤𝑘−1𝑚       (7)   

   

After a few iterations, particle filtering is known to 
suffer from degeneracy problems. So we integrate a 
resampling step to select particles for new 
generations in proportion to the importance 
weightsThis is due to the fact that the particle filter is 
then only used to estimate the nonlinear states, while 
the remaining conditional linear-Gaussian states are 
estimated using the closed-form particle filter. In our 
case, conditionally on the nonlinear state variables 
the DSS model contains a linear substructure on h, 
subject to Gaussian noise. Using the Bayes' theorem, 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015                                                                     522 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org 

the posterior density function of interest can be 
written as 
 

𝑝 �𝑥0:𝑘
𝛾0:𝑘

� = 𝑝( ℎ
(𝜃0:𝑘,𝜀0:𝑘,𝛾0:𝑘)(𝜃0:𝑘,𝜀0:𝑘,𝛾0:𝑘)

)        (8) 

Where  is analytically tractable and can be obtained 
via a particle filter associated with each particle. 
Indeed, the j-th PDF is a multi dimensional gaussian 
probability density function. The mean and the 
covariance  can be obtained using the particle 
filtering equations given by the time update equations  
                                                                     
ℎ𝑘
𝑘−1
(𝑗) =ℎ𝑘

𝑘−1
(𝑗)       ∑𝑗𝑘

𝑘−1=
∑ 𝑗𝑘

𝑘−1
       (9) 

 
2.3 Particle Filter:   

 
A particle filter is a nonparametric 

implementation of the Bayes filter and is frequently 
used to estimate the state of a dynamic system. The 
key idea is to represent a posterior by a set of 
hypotheses. Each hypothesis represents one potential 
state the system might be in. The state hypotheses are 
represented by a set S of N weighted random samples 
                           
      𝑆 = {< 𝑆[𝑖],𝑊 [𝑖] > 𝑖 = 1, … …𝑁}     (10) 
         
where s[i] is the state vector of the i-th sample and 
w[i] the corresponding importance 
weight. The weight is a non-zero value and the sum 
over all weights is 1. The sample 
set represents the distribution 

 
        𝑝(𝑥) = ∑ 𝑤𝑖  𝛿𝑠 (𝑖)(𝑥)

𝑁
𝑖=1               (11) 

 
: 

We are faced with the problem of computing the 
expectation that x ∈ A, where A 
is a region. In general, the expectation Ep[f(x)] of a 
function f is defined as 

𝐸𝑝[𝑓(𝑥)] = �𝑝(𝑥).𝑓(𝑥)𝑑𝑥         (12) 

Let B be a function which returns 1 if its 
argument is true and 0 otherwise. We can 
express the expectation that x ∈ A by 

𝐸𝑝[𝐵(𝑥𝜖𝐴)] = �𝑝(𝑥).𝐵(𝑥𝜖𝐴)𝑑𝑥 

              ∫𝑝(𝑥)
𝜋(𝑥) .𝜋(𝑥).𝐵(𝑥𝜀𝐴)𝑑𝑥         (13) 

where _ is a distribution for which we require that 
𝑝(𝑥) > 0,𝜋(𝑥) > 0 

Thus, we can define a weight w(x) a 

𝑤(𝑥) =
𝑝(𝑥)
𝜋(𝑥)                  (14) 

This weight w is used to account for the differences 
between p and the _. This leads to 

Ep[B(xϵA)] = �p(x). w(x). B(xϵA)dx 

                                 = Eπ[w(x)B(xϵA)]         (15) 

Let us consider again the sample-based 
representations and suppose the sample are drawn 
from. By counting all the particles that fall into the 
region A, we can compute the integral of  over A by 
the sum over samples 

            [∫ π(x)dx ≈ 1/n∑ B(s ∈ A)n
i=1 ]     (16) 

 

FIGURES AND TABLES 

3.1 CFO Estimation on SNR: 

The increment of SNR estimation accuracy of 
channel tends to be higher .It can also be observed 
that the number of the particles is another direction 
Factor of the estimation accuracy 
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Figure2: CFO Estimation on SNR 

 
 
 
3.2 INFERENCE: 
 

For 
SNR(db)  

At 
Calculation 
steps  

Estimation 
error  

0 13.2 0.1667 

6 13.2 0.07143 

12 13.2 0.0625 

Table1: Comparison for CFO Estimation SNR 
            
   
 
  3.3 CFO Estimation on number Of Particles: 
 
       As the of particles increase the estimation error   
will be lower.  In addition the particle with large 
weights have large number than that of the particle 
with lower weight. 

 
FIGURE 3: CFO Estimation on number of Particles 

 
 
3.4 INFERENCE: 
 

For NP  At 
Calculation 
steps  

Estimation 
error  

20 11.55 0.25 

50 11.5 0.2 

100 11.55 0.1667 

 
Table2:  Comparison for CFO Estimation NP 

 
4.CONCLUSION 
 

Particle filtering algorithm for frequency 
synchronization in MIMO-OFDM systems. It is 
based on the sequential Monte Carlo approaches in 
the Bayesian framework, and simplified to a one-
dimensional particle sampling in order to improve the 
computation efficiency. Numerical simulation shows 
that the algorithm can obtain high accuracy of CFO 
and estimation performance. Additionally, it can 
simultaneously estimate time-varying CFO and 
channel. It also has some robustness to the variation 
of the channel model. 
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